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Welcome!   
The UberCloud* Experiment started in July 2012, with a discussion about cloud adoption in technical 
computing and a list of technical and cloud computing challenges and potential solutions. We decided 
to explore these challenges further, hands-on, and the idea of the UberCloud Experiment was born, 
also due to the excellent support from INTEL generously sponsoring these experiments! 
 
We found that especially small and medium enterprises in digital manufacturing would strongly 
benefit from technical computing in HPC centers and in the cloud. By gaining access on demand from 
their desktop workstations to additional compute resources, their major benefits are: the agility 
gained by shortening product design cycles through shorter simulation times; the superior quality 
achieved by simulating more sophisticated geometries and physics and by running many more 
iterations to look for the best product design; and the cost benefit by only paying for what is really 
used. These are benefits that increase a company’s innovation and competitiveness.  
 
Tangible benefits like these make technical computing - and more specifically technical computing as 
a service in the cloud - very attractive. But how far away are we from an ideal cloud model for 
engineers and scientists? In the beginning, we didn’t know. We were just facing challenges like 
security, privacy, and trust; conservative software licensing models; slow data transfer; uncertain cost 
& ROI; availability of best suited resources; and lack of standardization, transparency, and cloud 
expertise. However, in the course of this experiment, as we followed each of the 205 teams closely 
and monitored their challenges and progress, we’ve got an excellent insight into these roadblocks, 
how our teams have tackled them, and how we are now able to reduce or even fully resolve them.  
 
Deep learning has emerged as a new promising application for cloud-based HPC computing. An 
important aspect in this context is the generation and management of training data. The Renumics 
platform supports these processes in particular within engineering application. This project between 
Renumics GmbH (Karlsruhe) and UberCloud was established to explore the benefits of additional cloud 
computing resources that can be used to create a large amount of data samples in a fraction of the 
time a desktop computer would need to create them. More specifically, the goal of this case study 
was to apply Artificial Neural Networks to solve fluid flow problems to significantly decrease time-to-
solution while preserving much of the accuracy of a traditional CFD solver. Creating a large number of 
simulation samples is paramount to let the neural network learn the dependencies between simulated 
design and flow field around it. In this project, we wanted to explore whether the overall accuracy of 
the neural network can be improved when more samples are being created in UberCloud’s OpenFOAM 
container on Advania Data Centers HPCFLOW Cloud and then used during the training of the neural 
network. 
 
We want to thank our main UberCloud Experiment sponsors INTEL and HPE for generously supporting 
all 211 UberCloud Experiments. 
 
Now, enjoy reading!  
Wolfgang Gentzsch and Burak Yenier 
 
*) UberCloud is the online community and marketplace where engineers and scientists discover, try, and buy 
Computing Power as a Service, on demand. Engineers and scientists can explore and discuss how to use this 
computing power to solve their demanding problems, and to identify the roadblocks and solutions, with a crowd-
sourcing approach, jointly with our engineering and scientific community. Learn more about the UberCloud at: 
http://www.TheUberCloud.com.  

 
Please contact UberCloud help@theubercloud.com before distributing this material in part or in full. 

© Copyright 2018 UberCloud™. UberCloud is a trademark of TheUberCloud Inc. 

http://www.theubercloud.com/
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Team 211 
 

Deep Learning for Steady-State Fluid Flow 
Prediction in the Advania Data Centers Cloud 

 

                      
  

1   MEET THE TEAM 
End-User: Jannik Zuern, Renumics GmbH, Karlsruhe, Germany 
Software Provider: OpenFOAM open source CFD software 
Resource Provider: Advania Data Centers Cloud, Iceland  
HPC and AI Experts: Stefan Suwelack, Markus Stoll, and Jannik Zuern, Renumics; Joseph Pareti, AI 
Consultant; and Ender Guler, UberCloud Inc.  
 

2   USE CASE 
Solving fluid flow problems using Computational Fluid Dynamics (CFD) is demanding both in terms of 
computer processing power and in terms of simulation duration. Artificial neural networks (ANN) can 
learn complex dependencies between high-dimensional variables. This ability is exploited in a data-
driven approach to CFD that is presented in this case study. An ANN is applied in predicting the fluid 
flow given only the shape of the object that is to be simulated. The goal of the approach is to apply an 
ANN to solve fluid flow problems to significantly decrease time-to-solution while preserving much of 
the accuracy of a traditional CFD solver. Creating a large number of simulation samples is paramount 
to let the neural network learn the dependencies between simulated design and flow field around it.  
 
This project between Renumics GmbH (Karlsruhe) and UberCloud Inc. was therefore established to 
explore the benefits of additional cloud computing resources that can be used to create a large 
amount of simulation samples in a fraction of the time a desktop computer would need to create 
them. In this project, we want to explore whether the overall accuracy of the neural network can be 
improved when more samples are being created in the UberCloud Container und then used during the 
training of the neural network. UberCloud kindly provided the cloud infrastructure, a CentOS Docker 
container with an OpenFOAM installation, and additional tech support during the project 
development. 
 

3   WORKFLOW OVERVIEW 
In order to create the simulation samples automatically, a comprehensive workflow was established.  
 
As a first step, random two-dimensional shapes are created. These shapes have to be diverse enough 
to let the neural network learn the dependencies between different kinds of shapes and their 
respective surrounding flow fields. 
 

“The overhead of creating high 

volumes of samples can be 

effectively compensated by the 

high-performance containerized 

computing environment provided 

by UberCloud and Advania.” 
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In the second step, these shapes are meshed and added to an OpenFOAM simulation case template 
(Fig. 1). This template is simulated using the steady-state solver OpenFOAM solver simpleFOAM. 

Figure 1: Simulation case setup. The flow enters the simulation domain through the inlet, flows 
around the arbitrarily shaped obstacle (dark grey shade) and leaves the simulation domain 

through the outlet. 
 
In the third step, the simulation results are Post-Processed using the open-source visualization tool 
ParaView. The flow-fields are resampled on a rectangular regular grid to simplify the information 
processing by the neural net.  
 
In the fourth and final step, both the simulated design and the flow fields are fed into the input queue 
of the neural network. After training, the neural network is able to infer a flow field merely from seeing 
the to-be-simulated design. 
 
In Figure 2, a visualization of the four-step Deep Learning workflow is shown. 

 
Figure 2: Deep Learning workflow. 

 

Hardware specs 
The hardware specs of the Advania Data Centers compute node hosting the UberCloud container are 
as follows: 

• 2 x 16 core Intel Xeon CPU E5-2683 v4 @ 2.10 GHz 

• GPU: none 

• Memory: 251 GB 
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The hardware specs of the previously used desktop workstation are as follows: 

• 2 x 6 core Intel i7-5820K CPU @ 3.30 GHz 

• GPU: GeForce GTX 1080 (8GB GDDR5X memory) 

• Memory: 32 GB 

 
4   RESULTS 
 
Time needed to create samples 
As a first step, we compared the time it takes to create samples on the desktop workstation computer 
with the time it takes to create the same number of samples on the UberCloud container. Figure 3 
illustrates the difference in time it took to create 10,000 samples 
 
On the desktop computer it took 13h 10min to create these 10,000 samples. In the UberCloud 
OpenFOAM container in the Advania Data Centers Cloud, it took about 2h 4min to create 10,000 
samples, which means that a speedup of 6.37 could be achieved using the UberCloud container. 
 

                                                    

 Local machine UberCloud container 

                            Figure 3: Comparison between Local machine and UberCloud container. 
 

Neural Network performance evaluation 
A total of 70,000 samples were created. We compare the losses and accuracies of the neural network 
for different training set sizes. In order to determine the loss and the accuracy of the neural network, 
we first must define, what these terms actually mean. 
 

 
Figure 4: Performance and speedup of flow simulations with neural network prediction. 
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Definitions 
Loss:  The loss of the neural network prediction describes how wrong the prediction of the neural 
network was. The output, or prediction, of the neural network in our project is a N ×M ×2 tensor since 
the network tries to predict a fluid flow field with N elements in x-direction, M elements in y-direction, 
and two flow velocity components (velocity in x-direction and velocity in y-direction). A mean-
squared-error metric was used to calculate the loss l: 
 

  (1) 
where 𝑣dij denotes the ground-truth velocity component in dimension d at the grid coordinates (i,j), 
𝑣dij denotes the predicted velocity component at the same position and in the same dimension. The 
goal of every machine learning algorithm is to minimize the loss of the neural network using numerical 
optimization schemes such as Stochastic Gradient Descent. Thus, a loss of 0.0 for all samples would 
mean that every flow velocity field in the dataset is predicted perfectly. 

 
Accuracy:  In order to be able to make sensible statements about the validity of the prediction of the 
neural network, metrics have to be defined that describe the level of accuracy that the neural network 
achieves. In general, the accuracy of a neural network describes how accurate the prediction of the 
neural network was. While the loss of a neural network is the metric that is being minimized during 
training, a small prediction loss does not necessarily mean that the corresponding prediction is 
physically meaningful. In general, however, a small prediction loss usually corresponds with a high 
accuracy. Different measurements of how accurate the outputs of the neural network are needed to 
express the validity of the predictions. A highly accurate prediction should have high values for all 
formulated accuracy measurements and a low loss at the same time. These accuracies can have values 
between 0.0 and 1.0, where an accuracy of 0.0 indicates that the prediction of the neural network 
does not at all coincide with the ground truth flow metric that is examined, and an accuracy of 1.0 
means that the prediction coincides perfectly with the ground truth flow metric. Bear in mind that a 
low loss does not necessary cause high accuracy and vice versa. However, the two measurements are 
typically correlated. 

 
In this study, two different accuracies were evaluated: Divergence accuracy and Drag accuracy: 

• Divergence accuracy:  Numerical CFD solvers aim to find a solution to the continuity equation and 
the momentum equation. For an incompressible fluid, the continuity equation dictates that the 
divergence of the velocity vector field is zero for every point in the simulation domain. This follows 
the intuition that at no point in the simulation domain fluid is generated (divergence would be 
greater than zero) or ceases to exist (divergence would be smaller than zero). By design, the Finite 
Volume Method preserves this property of the fluid even in a discretized form. A data-driven 
approach should as well obey this rule. 

• Cell accuracy:  The number of correctly predicted grid cells in the two- or three-dimensional grid 
yields an intuitive metric for how well the neural network predicts fluid flow behavior. As the 
network will never be able to predict the fluid flow velocity down to the last digit of a floating-point 
number, the following approach is proposed: If the relative error between the network prediction 
and the actual flow velocity is smaller than 5%, the respective grid cell is declared as predicted 
correctly. The cell accuracy can be calculated by counting the number of correctly predicted grid 
cells and dividing the results by the total number of grid cells. 

 
5   TRAINING RESULTS 
The generated samples are divided into the training and validation datasets. The training- and 
validation loss for different numbers of training samples was evaluated. Concretely, the neural net 
was trained three times from scratch with 1,000, 10,000, and 70,000 training samples respectively.  
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The following training parameters were used for all neural network training runs: 

• Batch size: 32 

• Dropout rate: 0.5 

• Learning rate: 5×10−4 

•  

 

 

Training loss 
Validation loss 

 

Figure 5: Loss after 50,000 training steps. 
 

It can be observed that both training- and validation losses are lowest for the 70k samples training 
and are highest for the 1k training samples. The more different samples the neural network processes 
during the training process the better faster it is able to infer a flow velocity field from the shape of 
the simulated object suspended in the fluid. The validation loss tends to be higher than the training 
loss for all tested numbers of samples, which is a typical property of machine learning algorithms. 
Figure 6 shows the loss after 300,000 training steps: 
 

 

 

Training loss 
Validation loss 

 

Figure 6: Loss after 300,000 training steps. 
 
Surprisingly, the final training- and validation losses for the 70k samples training session are as low as 
the losses for the 1k samples training session. Generally speaking, no clear tendency towards lower 
losses when increasing the set of the training samples could be observed. This result is somewhat 
surprising since we expected the final losses at the end of the training process to show a similar 
tendency towards lower losses for higher numbers of samples. We assume that the number of 
samples does not heavily influence the final loss for extensive training sessions with many hundreds 
of thousand training steps. Finally, in Figure 7 the divergence and grid accuracies are visualized. 
 

 

 

Divergence accuracy  
Grid cell accuracy 

 

       Figure 7: Validation accuracies after training. 
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Both the divergence accuracy and the grid cell accuracy show higher values for larger numbers of 
samples. While the divergence accuracy shows overall high values going from 0.94 for 1,000 samples 
to 0.98 for 70,000 samples, the grid cell accuracy also increases from a value of 0.53 for 1,000 samples 
to a value 0.66 for 70,000 samples. To recap: a grid accuracy of 0.66 means that approximately two 
thirds of all velocity grid cells were predicted correctly within 5% relative error to the correct value. 
 
Figure 8 illustrates the difference between the ground truth flow field (left image) and the predicted 
flow field (right image) for one exemplary simulation sample after 300,000 training steps. The arrow 
direction indicates the flow direction and the arrow color indicates the flow velocity. Visually, no 
difference between the two flow fields can be made out. 
 
 

 
 

Figure 8: Exemplary simulated flow field (left image) and predicted flow field (right image). 

 
CONCLUSION 
We were able to prove a mantra amongst machine learning engineers: The more data the better. We 
showed that the training of the neural network is substantially faster using a large dataset of samples 
compared to smaller datasets of samples. Additionally, the proposed metrics for measuring the 
accuracies of the neural network predictions exhibited higher values for the larger numbers of 
samples. The overhead of creating high volumes of additional samples can be effectively compensated 
by the high-performance containerized (based on Docker) computing node provided by UberCloud on 
the Advania Data Centers Cloud. A speed-up of more than 6 compared to a state-of-the-art desktop 
workstation allows creating the tens of thousands of samples needed for the neural network training 
process in a matter of hours instead of days. 
 
In order to train more complex models (e.g. for transient 3D flow models) much more training data 
will be required. Thus, software platforms for training data generation and management as well as 
flexible compute infrastructure will become increasingly important.  
 

 
Case Study Author – Jannik Zuern, Renumics GmbH 

 
 
 
 
 
 
 



Team 211 - Deep Learning for Steady-State Fluid Flow Prediction in the Advania Cloud 

 

Thank you for your interest in our free and voluntary UberCloud Experiment! 
 
If you, as an end-user, would like to participate in an UberCloud Experiment to explore hands-on the 
end-to-end process of on-demand Technical Computing as a Service, in the Cloud, for your business 
then please register at: http://www.theubercloud.com/hpc-experiment/. 
 
If you, as a service provider, are interested in a SaaS solution and promoting your services on the 
UberCloud Marketplace then please send us a message at https://www.theubercloud.com/help/.  
 
2013 Compendium of case studies:  https://www.theubercloud.com/ubercloud-compendium-2013/ 
2014 Compendium of case studies:  https://www.theubercloud.com/ubercloud-compendium-2014/ 
2015 Compendium of case studies:  https://www.theubercloud.com/ubercloud-compendium-2015/ 
2016 Compendium of case studies:  https://www.theubercloud.com/ubercloud-compendium-2016/ 
2018 Compendium of case studies:  https://www.theubercloud.com/ubercloud-compendium-2018/ 
 
The UberCloud Experiments & Teams received several prestigious international Awards, among other: 

- HPCwire Readers Choice Award 2013: http://www.hpcwire.com/off-the-wire/ubercloud-
receives-top-honors-2013-hpcwire-readers-choice-awards/  

- HPCwire Readers Choice Award 2014: https://www.theubercloud.com/ubercloud-receives-
top-honors-2014-hpcwire-readers-choice-award/  

- Gartner Cool Vendor Award 2015: http://www.digitaleng.news/de/ubercloud-names-cool-
vendor-for-oil-gas-industries/  

- HPCwire Editors Award 2017: https://www.hpcwire.com/2017-hpcwire-awards-readers-
editors-choice/  

- IDC/Hyperion Research Innovation Excellence Award 2017: https://www.hpcwire.com/off-
the-wire/hyperion-research-announces-hpc-innovation-excellence-award-winners-2/  

 
If you wish to be informed about the latest developments in technical computing in the cloud, then 
please register at http://www.theubercloud.com/ and you will get our free monthly newsletter. 
 
To learn how deep learning can automate your engineering workflows, please contact the Renumics 
team (info@renumics.com) and schedule a free intro call. 
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